Student Response Sheet - Answer Sheet

School:			_ V	J	V1	JV	2	JV3
Student	Names:							_
	each answer, fill in the blan s, values should be written units. Only answers writ Tiebreakers - 12,	with the correct i ten on this answe	num er sh	bei eet	of wil	sign Il be	nifie e gr	cant figures and
1.		15.						
2.	A B C D							
3.								
4.		16.	A	В	С			
		17.	A	В	С	D	E	
		18.	A	В	С	D	E	
		19.				_		
5.	A B C D E							
6.								
		20.	A	В	С	D		
7.		21.				_		
8.		22.	A	В	С	D		

9.

23. _____

10. A B C D

24. A B C

11.

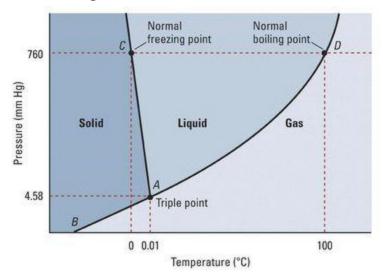
25. A B C

12. _____

13. A B C D E

14. _____

Thermodynamics Written Test

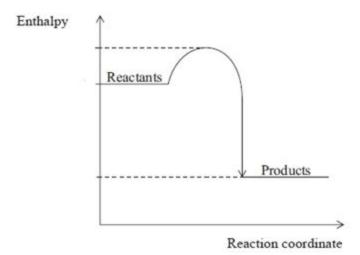

Note: Answer all questions on the provided **Answer Sheet.** Do not write on these exams.

- 1. Who is regarded as the "Father of Thermodynamics"?
- 2. All of the following pairings EXCEPT ONE identifies a scientist and their contribution to the field of thermodynamics. Which one is incorrect?
 - A. Joule mechanical equivalent of heat
 - B. Carnot useful effect of a motor (work)
 - C. Boltzmann the connection between entropy and molecular motion
 - D. Clausius identified enthalpy as a heat function for constant pressure
- 3. Which scientist is famous for experimentally finding the mechanical equivalent of heat?
- 4.(2pts) Assume the average human consumes 2.00×10^3 Kilocalories a day, and the average light bulb requires 86,400,000 Joules of energy per day. How much more energy does the lightbulb consume per day?
- 5. Aluminum particles are placed in a vacuum. Which of the following temperatures could be achieved by the particles in this vacuum?
 - A. 34 K
 - B. -400 F
 - C. 1,000,000 C
 - D. None of the above
 - E. All of the above

Questions 6-8 refer to the paragraph below:

A scientist in a lab creates a brand-new temperature scale called the Wolfie scale. The Wolfie scale is based around absolute zero and the melting point of gold (1948 degrees Fahrenheit). O degrees Wolfie is set at absolute zero, and 100 degrees Wolfie is set at the melting point of gold.

- 6. (2 pts) A change in temperature of 2.0 degrees Wolfie is equal to how many Kelvin?
- 7. (2 pts) The specific heat of water is $4.19 \text{ J/(g} \cdot \text{K})$. How much energy, in Joules, is required to heat up 1.00 liters of water by 1.00 degree Wolfie?
- 8. (2 pts) What is the specific heat of water in Joules per gram Wolfie?
- 9. The burning of a sample of propane generated 104.6 kJ of heat. All of this heat was used to heat 500.0 g of water that had an initial temperature of 20.0 C. What was the final temperature of the water?
- 10. The pressure is increased on a sample of water at 0 °C from 0 mmHg to 800 mmHg. In order, what changes occur?


- A. deposition, melting
- B. condensation, freezing
- C. sublimation, melting
- D. deposition, freezing

- 11. (2 pts) A student must use 445 mL of hot water in a lab procedure. Calculate the amount of heat required to raise the temperature of 445 mL of water from 23.0 C to 100.0 C.
- 12. (3 pts) 25.00 grams of $\rm H_2$ and 10.00 grams of $\rm O_2$ are placed in a container at 300.0 K and 101.325 kPa. The mixture is ignited to form gaseous water. The container is cooled back to 300.0 K after the reaction. Determine the total pressure in the container at this point.
- 13. A student opens the top window and the bottom window in a hot room. Warmer air goes out of the top window, while cooler air comes in the bottom window. Which best explains why the room becomes cooler?
 - A. Reflection
 - B. Diffraction
 - C. Conduction
 - D. Radiation
 - E. Convection
- 14. (2 pts) If it takes 105 calories to warm 100.0 g of a sample from 20.0 $^{\circ}$ C to 25 $^{\circ}$ C, what is the specific heat of the sample?
- 15.(2 pts) A copper cylinder has a mass of 76.8 g and a specific heat of 0.092 cal/(g·K). It is heated to 86.5 °C and then put in 68.7 g of oil which has a temperature of 19.5° C. The final temperature of the mixture is 31.9° C. What is the specific heat of the oil?
- 16. The specific heat of mercury is $0.140 \text{ cal/(g} \cdot \text{K})$. The specific heat of water is $1.00 \text{ cal/(g} \cdot \text{K})$. When 40 J of heat is added to an equal mass of each substance at STP, the sample of mercury expands _____ the sample of water does.
 - A. More than
 - B. Equally as much as
 - C. Less than

- 17. Which of two rods has the greater thermal conductivity?
 - A. A rod with electrons that are more free to move from atom to atom than are the electrons in another rod
 - B. A rod with greater specific heat than another rod
 - C. A rod with greater cross-sectional area than another rod
 - D. A rod with greater length than another rod
 - E. A rod with the greatest insulative properties
- 18. Which of the following statements are true for an isothermal process? Circle ALL that apply.
 - A. During an isothermal process, the work done by the gas equals the heat added to the gas.
 - B. During an isothermal process, the internal energy of the system changes.
 - C. An isothermal process is carried out at constant temperature.
 - D. An isothermal process is carried out at constant pressure.
 - E. An isothermal process is carried out at constant volume.
- 19. What is the maximum theoretical efficiency possible for an engine operating between 100.0 °C and 400.0 °C? (Give a percentage)
- 20. A _____ is an example of a reversed heat engine.
 - A. heat pump
 - B. refrigerator
 - C. both of the above
 - D. Neither of the above
- 21.(2 pts) Consider the following scenario: 0.300 moles of a diatomic gas is placed in a perfectly insulating piston at 203,000 Pa of pressure. The piston is a cylinder in shape and has a radius of 10.0 cm and a height of 20.0 cm. Note that the gas constant R is $8.314 \, \text{J/(mol \cdot K)}$.

What is the temperature of the gas in the piston?

- 22. According to the second law of thermodynamics, Gibbs free energy will always _____ in a closed system that is *not* in equilibrium:
 - A. Increase
 - B. Decrease
 - C. Stay Constant
 - D. Change proportionally to the change in enthalpy
- 23.(2pts) A surface is measured to have an emissivity of $\varepsilon = 0.986$. Calculate the radiant exitance (in W/m^2) of this surface when it is at 285.0 K.
- 24. Consider the diagram below, representing a chemical reaction:

The reaction is:

- A. Exothermic
- B. Endothermic
- C. Isothermic
- 25. Consider the solid compound $KClO_3$. When it dissolves in distilled water, the enthalpy has increased. Furthermore, the entropy has _____ and the Gibbs free energy has decreased.
 - A. Increased
 - B. Decreased
 - C. Remained Constant

Thermodynamics Regionals C 2019

Student Response Sheet - Answer KEY

School:		
Student Names:		
		Only answers written
1. Carnot	15. 0.45 cal/(g·	K)(2pts)
2. D	16. A	
3. Joule	17. A	
4. 7.803 x 10 ⁷ J(2pts)	18. A, C	
5. E	19. 44.57 %	
6. 27 (2 pts)	20. B	
7. 56,600 J(2pts)	21. 511K (2pts)
8. 56.6 J/(g G) (2 pts)	22. B	
9. 70.0 C (2pts)	23. 369 W/m^2	!(2pts)
10. A	24. A	
11. 143 kJ (2pts)	25. A	
12. 98.83 (3 pts)		
13. E		

14. 0.21 cal/(g K)(2pts)

Thermodynamics Regionals C 2019